(e)

Mobile App
Development
Frameworks.

A security perspective.

mobisec

Table of contents

03 Preface

by Giorgio Baldassarre

o4 |ntroduction

05 The Platforms

05 Android
06 i0OS

or Cross-platform Frameworks

o8 Flutter

10 Cybersecurity Issues

1 React Native

Cybersecurity Issues

12 lonic

Cybersecurity Issues
PREPARED BY

Ahmad Zubair Zahid
.NET MAUI

1

w

TECHNICAL SUPPORT .
. Cybersecurity Issues
Harshul Vaishnav

PREPARED FOR
Mobisec

Table of contents

14 Honorable Mentions

Kotlin Multiplatform
Avalonia
NativeScript

Cordova

15 Others Notable Frameworks
Kivy
LynxJS
Qt
Uno Platform

Xamarin

Tauri

1

(@]

Suitability and Security Considerations

1

o

Mobisec DSA Security Evaluation

20 The Big Question

Preface

GIORGIO BALDASSARRE
Mobile Lead Engineer

Choosing the right mobile framework in 2025 is not an easy task.
With native options like Android and iOS, cross-platform
technologies such as Flutter, React Native, and lonic, and newer
contenders like Kotlin Multiplatform (KMP), the decision involves
far more than technical preferences. Performance, maintainability,
development speed, and access to native features are all part of
the equation — often overshadowing another critical aspect:
security.

Each technology stack introduces its own set of tools, languages, and
constraints — and with those, a distinct security profile. Security, in this
context, means understanding how our technical choices shape the threat
surface of a mobile application. The framework we choose directly impacts the
types of attacks our apps are most exposed to.

As a mobile expert, | have worked with a wide variety of technologies, teams,
and mindsets. One thing is clear: in a world where we practically live through our
smartphones, protecting the data they hold is not optional — it is essential. Too
often, the main business focus is on providing a great user experience and being
competitive in terms of time to market — leaving cybersecurity out of the
equation or limited to rushed, superficial configurations. In my experience,
creating secure apps means being aware, staying wellllinformed about the
technology, and taking action at the right time.

That is exactly the purpose of the following paper by Mobisec. | appreciated its
clear and structured approach to this complex landscape. It maps out the key
security concerns that arise when building mobile apps — depending on the
framework or platform chosen. This awareness is where any effective security
process must begin. In a space often driven by trends, libraries, and
development speed, this paper invites us to pause and reflect:

Are we making informed architectural decisions, or are we
unknowingly introducing weaknesses into our apps?

Security should be taken into account from the earliest stages of a project and
become part of its very foundation. The insights in this paper will guide you in
making more informed, secure choices — starting with the framework you build
on.

Introduction

PREPARED BY
Ahmad Zubair Zahid

TECHNICAL SUPPORT
Harshul Vaishnav

PREPARED FOR

Mobisec

Android is the most popular mobile operating system in the world, with an
estimated 4 billion active users. Its widespread use is due to its open ecosystem
and the wide variety of available devices, which makes it especially popular in
regions where affordability and flexibility are key. Apple's iOS is the second
most popular globally. It is strong in premium markets but has a smaller overall
user base. For developers and businesses aiming to maximize their reach,
targeting both Android and iOS is essential.

However, building for both platforms traditionally means keeping two separate
codebases: one for Android, typically using Java or Kotlin, and another for iOS,
using Swift or Objective-C. This approach doubles the workload, increases
costs, and makes maintenance more complicated, especially when trying to
ensure that features are the same and users have the same experience on
different platforms. To address these challenges, cross-platform frameworks
have been created that allow developers to write a single codebase which
targets multiple platforms, including mobile, desktop, and web.

Some cross-platform frameworks, like lonic and Cordova, rely on web
technologies like HTML, CSS, and JavaScript. Apps built with these frameworks
rely heavily on the WebView components, which are available on both Android
and iOS. This method is suitable for apps that don't need high-quality graphics
or high performance. It also makes adapting to web and desktop environments
easier. However, it may affect performance and restrict access to some device
features.

Other frameworks, such as Flutter, do things differently by packaging their own
technology stack. Flutter, for example, uses the Dart language and can be
compiled into native executables, bypassing the need for a WebView. It has its
own rendering engine and communicates with the operating system through
native channels.

Modern cross-platform frameworks can be used on more than just mobile
devices. Many now support building applications for the web, desktop and even
embedded systems from the same code base. This makes development and
maintenance much easier. The choice between native and cross-platform
development depends on the specific needs of the project. This includes
performance requirements, what kind of user experience is wanted, and what
development resources are available. For most business applications where it is
important that the software is fast to develop, doesn't cost too much and is
reliable across multiple platforms, cross-platform frameworks are a practical
and effective solution.

This paper aims to help developers and product owners make informed
decisions about whether to adopt cross-platform development for their
projects. It will examine the strengths and limitations of popular cross-platform
frameworks, compare them with native development approaches.

The platforms

With the advent of smartphones, two major platforms emerged:
Android and iOS. While there are other mobile operating systems,
these two now dominate the market.

Android

Android began as a project by Android Inc in 2003. Google
acquired the company in 2005, which marked the start of Android
becoming the world’s leading mobile OS. Built on the Linux kernel,
Android was designed for small devices like smartphones. From
the start, the main programming language used to develop Android
was Java. Components that are important for performance are
often written in C or C++.In 2017, Google added official support for
Kotlin.

Using Java or Kotlin to develop apps for Android is still the best and most
well supported way. It gives developers immediate access to all new OS
features, APIs, and system-level integrations, so they don't have to wait for
third-party frameworks or plugins to catch up. Any new security
improvements or platform features are available first for Java/Kotlin
developers, and the many tools, libraries and documentation are optimized
for these languages. The process model, application sandboxing and
system interactions are all designed with this native stack in mind.

Choosing native Android development ensures the best performance, immediate
access to features, and support for most tools. But this means developers need to
keep separate versions of the code for each platform, and to be part of a team who
knows how to use the different technologies. For organizations heavily invested in
Android, or for products demanding deep system integration and long-term support,
this remains the most robust and future-proof approach. Developers can also use a
mix of different strategies, like adding Flutter modules to a native app.

Developing apps for Android using Java or Kotlin is the basic structure against which all other
frameworks are measured, and any changes to security or architecture at the operating system level
will first and foremost affect this development route. These changes will also have indirect effects on
cross-platform solutions that ultimately rely on the same underlying mechanisms.

mobisec

mobisec

iI0S

iOS is Apple’s tightly controlled, optimized OS for iPhones, iPads,
and related devices. Native development uses Objective-C and
Swift. Objective-C, a C superset with object-oriented features,
was the original iOS language and is still key for legacy support
and deep system integration. Introduced in 2014, Swift offers a
safer, more concise, and efficient alternative.

Native iOS development with Swift or Objective-C, like Android
development with Java or Kotlin, offers full access to platform
features, new OS capabilities, and top performance and security.
Built directly on Apple’s SDKs, it ensures immediate use of new
APIs and hardware, smoother animations, faster load times, and
better responsiveness crucial for performance-heavy apps like
games, AR/VR, or those using advanced device features.

Native iOS development is the best way to get top performance
and use new Apple features quickly. Cross-platform tools are
helpful but still rely on native code. For teams who want reliable
apps that work well with Apple devices, using Swift or Objective-
C is the safest choice.

mobisec

Cross-Platform
Frameworks

Cross-platform frameworks such as Flutter, React Native, and .NET MAUI
enable developers to use the same code for both iOS and Android, making
development faster and cheaper. These frameworks are ideal for projects
where quick delivery, code reuse, reaching a wide audience, and easy
maintenance are important, since updates and bug fixes only need to be
made once.

However, there are also some disadvantages. Cross-platform frameworks
typically implement abstraction layers or bridging to interact with native
APIs. On Android, for example, the app still starts with a native Java/Kotlin
entry point (an Activity) that then controls the cross-platform engine. These
added layers can result in reduced performance and increased latency,
particularly if an app relies heavily on real-time processing or advanced
hardware features.

Additionally, access to the latest operating system (OS) capabilities may be
delayed, as framework maintainers need time to update their plug-ins and
libraries after Apple or Google releases new features. Another
disadvantage is that cross-platform apps tend to be larger than native
apps, which can affect download times and storage usage.

Although cross-platform frameworks are growing quickly, they may still
have problems with plugin compatibility, debugging and support for edge-
case features may still occur. Furthermore, developers must exercise
caution when using shared code, as weaknesses in common modules can
be transferred to all platforms.

Cross-platform frameworks have improved significantly and now work
almost as well as native code for many applications. However, certain
advanced or security-sensitive applications still benefit from the control
and speed of native code.

mobisec

Flutter

Open Source: YES
Github starts: 170K

Flutter, which was developed by Google, has become one of the top
cross-platform frameworks since it was launched in 2017. Flutter
applications are written in Dart, another Google project. These
applications are compiled directly to native binaries, which means they
can run quickly and feel like other native apps on different platforms.

The framework comes with its own rendering engine, and ships as
"libflutter.so" in each application. This design means every Flutter app
has its own runtime, which makes the app bigger but lets developers
update or fix the runtime separately from the operating system. This is a
significant advantage over native apps, where updates to core
frameworks typically depend on OS updates, which can be slow or
fragmented, especially on Android.

The self-contained nature of Flutter apps has both benefits and
drawbacks. The upside is that developers can add new features or fix
security issues straight away, without waiting for device manufacturers
or OS vendors to release updates. This is particularly useful in the
Android ecosystem, where users have a lot of different versions of the
operating system. The main disadvantage of this is that using the whole
Flutter engine in every app makes the software files bigger and could
possibly be a security risk. Since unlike modifying the device’s native
runtime, an attacker can alter the Flutter embedded runtime by
repackaging the app and installing it, all without requiring root access.
This is arisk that is shared by any framework that is not at the system
level.

Flutter's technical strengths include hot reloading for fast changes, a
wide and customizable widget library, and direct compilation to ARM
code for almost native performance. The framework supports
development for iOS, Android, web, desktop, and embedded platforms
from a single codebase, making it a great choice for teams that want to
reach lots of people and keep things running smoothly.

The number of people using Flutter is increasing quickly. It is used by
millions of developers worldwide, powers hundreds of thousands of
published apps, and is favored by major companies for its scalability and
rapid development cycle. Its popularity is also evident in developer
surveys and open-source activities. It is consistently one of the most
loved and widely used frameworks.

https://github.com/flutter/flutter

Flutter compiles directly to native code, bypassing WebView and
JavaScript bridge limitations found in other frameworks, resulting in faster,
more responsive Uls and fewer vulnerabilities.

Flutter supports built-in security features such as code obfuscation, secure
storage, and encrypted communications, and its modular architecture
allows rapid deployment of updates and fixes. While its design makes
reverse engineering more challenging, it is not immune to determined
attackers, so robust security depends on careful implementation of best

practices.

Looking ahead, Flutter's roadmap includes continued improvements in
performance, deeper Al integration, expanded support for different type
devices, and enhanced tooling for debugging and profiling. For
organizations seeking a modern, scalable, and future-proof solution for
cross-platform development, Flutter offers a compelling balance of
performance, flexibility, and community support.

The graph below shows how Flutter has grown in popularity compared
to other frameworks.

4.00%

3.50%

3.00% —

2.50%

2.00% —

1.50%

1.00% —

0.50% —

0.00%

% of Stack Overflow questions that month

Source: Tag Trends - Stack Overflow

ot
2010

|
2012

I
2014

|
2016

Year

|
2018

I
2020

I
2022

P

N

I
M, ':lrluj"-.'\"k*'wl,'h"v"m Af

\ J
l'u"ll \f

I
2024

B fiutter

| cordowa

[react-native

B xamarin.android
B ionic-framewwork

Here is a list of some of the companies that have adopted Flutter Framework: AliBaba, Baidu,
iRobot, Groupon, eBay, Google Ads, Tencent, Toyota, Ubuntu and Philips Hue.

mobisec

Cybersecurity Issues

Mobisec DSA assessment of some Flutter-based applications revealed several notable
security issues. The applications are not compiled with common security flags such as Stack
Canary and Position Independent Code (PIC), which are typically used to mitigate certain
classes of memory exploits in native code.

There are also some concerns about network security, but to properly understand them, a
brief introduction is needed: Flutter uses Dart, which doesn't rely on the system Certificate
Authority (CA) store. Instead, Dart compiles its own list of trusted CAs directly into the
application. This means that Dart is not inherently proxy-aware, and network proxies will not
work unless the CA list is manually updated or bypassed, effectively providing a form of
certificate pinning by default, which is the reason why many Flutter applications lacks
certificate pinning or has an improperly configured implementation.

However, when it comes to WebViews within Flutter, these components do use the system
CA store, which can leave them vulnerable to man-in-the-middle attacks. This means that
manual certificate pinning shall be implemented to ensure equivalent security in both
contexts.

mobisec

10

mobisec

React Native

Open source: YES
Github Stars: 122K

Under the mantle of Meta, React Native has become one of the most popular
ways of developing mobile apps for different platforms since it was
introduced by the former Facebook. It is built on JavaScript and TypeScript,
which means that developers can write a single set of code that can be used
on both iOS and Android. Unlike web-based frameworks, React Native
renders actual native Ul components, delivering a user experience and
performance level that closely matches fully native apps.

The React Native ecosystem is large and active, backed by a strong
community and many libraries. TypeScript has become the preferred choice
for new projects, improving code reliability and maintainability. Major
companies like Facebook, Instagram, Airbnb, and Shopify rely on React
Native, proving its scalability and reliability in production.

Cybersecurity Issues

When it comes to security, there are some considerations compared to
native or Flutter development. Its use of JavaScript makes the codebase
inherently easier to reverse-engineer, even with obfuscation tools, compared
to Flutter’s compiled ARM code or native binaries. Data storage is another
concern-React Native’s default (now removed for community alternatives)
AsyncStorage lacks built-in encryption, requiring developers to implement
secure wrappers or rely on third-party solutions, whereas Flutter provides
more robust, native-like secure storage APlIs.

While React Native’s new architecture has closed much of the performance
gap with native solutions, the framework still lags when it comes to
leveraging hardware-backed security features and providing the deep OS
integration required for high-security applications. For projects where
advanced security is a non-negotiable requirement, native development or
Flutter remains the more robust choice.

Looking ahead, React Native's roadmap includes deeper Al integration to
optimize the development experience, ongoing improvements in
performance and tooling, and further enhancements to its already robust
ecosystem. For organizations seeking a mature, flexible, and future-proof
framework for building cross-platform mobile apps, React Native remains a
compelling choice, balancing developer productivity with near-native user
experience.

Here is a list of some of the companies that have adopted React Native
Framework: Facebook, Instagram, Microsoft Office, Micorsoft Teams, Xbox
Game Pass, Amazon Alexa, Shopify, WiX, Tableau, Klarna, Discord.

1

https://github.com/facebook/react-native

lonic

Open source: YES
Github Stars: 57K

lonic is also a mature and widely adopted cross-platform
framework that leverages standard web technologies-HTML, CSS,
and JavaScript-to enable developers to build applications for iOS,
Android, and the web from a single codebase. An important part of
lonic is that it relies on a WebView, which is like a box that holds
together the app's Ul using web standards.

This approach allows for quick development, easy cross-platform
deployment, and seamless integration with modern JavaScript
frameworks such as React, Angular, and Vue. Developers can choose
their preferred framework or even use lonic without any framework at
all. This makes it accessible to a wide range of teams and skill sets.
Capacitor, lonic's official native bridge, lets developers access native
device APIs and plugins directly. This allows them to create custom
native experiences when needed.

The framework has a vibrant ecosystem, with millions of monthly NPM installations, tens of
thousands of GitHub stars, and a global community that actively contributes plugins, tutorials and
support. lonic is popular with both big companies and start-ups. It is used to make apps that can be
updated quickly, have the same look and feel on different platforms, and are easy to take care of.

Cybersecurity Issues

When it comes to security and how easy it is to maintain, lonic has the same strengths and
limitations as other web-based technologies. It's important to follow the best security practices, like
secure data storage, HTTPS enforcement, and regular dependency audits, as the WebView model
can expose apps to the same vulnerabilities as traditional web applications if not properly managed.
However, the framework's maturity and active community address security issues promptly.

When it comes to performance, lonic has come a long way with its hardware acceleration and
optimized rendering. But it might not be as fast or as deeply integrated into the operating system as
other frameworks like Flutter or fully native development. For most business and productivity apps,
this trade-off is fair, especially because development is quick and code can be shared easily. For
applications with high graphics or that need to process data in real-time, native or cross-platform
solutions may still be the best option.

lonic's best features are that it is easy to maintain, flexible, and can give users a consistent
experience across different platforms with little extra work. Its architecture is especially suited for
teams who are very experienced in web development, projects that need to be deployed to the web
and mobile at the same time, or scenarios where it is important to create a prototype quickly and
make improvements. lonic remains a compelling choice for a proven, scalable approach to cross-
platform development.

Here is a list of some of the companies that have adopted lonic
Framework: CAT, BBC, Burger King, NBC.

mobisec 12

https://github.com/ionic-team/ionic-framework

NET MAUI

Open Source: YES
Github Stars: 22K

Microsoft's .NET MAUI (Multi-platform App Ul) has quickly become a
popular choice in the cross-platform development landscape. .NET
MAUI is based on Xamarin.Forms. It lets developers create native
applications for Android, iOS, macOS and Windows. They can do this
from a single C# codebase.

The architecture of .NET MAUI is designed for deep native integration.
Applications built with MAUI leverage the .NET Base Class Library and run on
the Mono runtime for Android, iOS, and macOS, and on the .NET Core CLR for
Windows. MAUI provides a variety of Ul controls, advanced layout engines,
and cross-platform APIs for accessing device features such as GPS, sensors,
and battery status.

Cybersecurity Issues

Security in NET MAUI is robust, benefiting from the maturity of the .NET platform. The framework
supports secure storage, encrypted communications, and regular updates through Microsoft's
established security processes. But, as with any technology that works across different platforms,
there are risks if third-party libraries or plugins are not vetted properly. It has recently been reported
that malicious actors are exploiting MAUI's architecture to conceal and evade detection, particularly
in Android malware campaigns.

Community engagement and ecosystem support for NET MAUI are
strong and growing. The framework is open to contributions; it includes
a variety of free tools and professional user interface suites.
Microsoft’'s regular updates and transparent roadmap provide
confidence in the platform’s long-term viability.

Compared to other cross-platform frameworks, .NET MAUI stands out
for its smooth integration with native APls, its ability to target both
mobile and desktop from a single codebase, and its deep ties to the
.NET ecosystem. While frameworks like Flutter and React Native offer
strong cross-platform capabilities, MAUI is particularly good for
organizations already using Microsoft technologies or looking for a
strong, scalable solution for multi-platform development. For teams
that prioritize maintainability, performance and access to the latest
platform features, .NET MAUI offers a compelling balance of flexibility
and power.

Here is a list of some of the companies that have adopted .NET MAUI
Framework: Dynamics 365, Tyler Technologies, Azure App, Civica,
NBC Sports Next; Fidelity Investments.

mobisec

https://github.com/dotnet/maui

Honorable Mentions

Kotlin Multiplatform

Kotlin Multiplatform (KMP), made by JetBrains
and officially approved by Google, is a technology
that lets you share code across Android, iOS,
web, desktop and more. Unlike full-stack
frameworks, which conceal platform differences,
KMP shares business logic and core functionality.
It also allows developers to use native languages
like Swift for iOS and Kotlin for Android to create
platform-specific user interfaces and
integrations. This approach keeps the
performance and access to platform APIs the
same, which is great for teams that need
efficiency and flexibility.

KMP excels when you want to share business
logic, data models, and networking code across
platforms while keeping unique native Uls.
Leading companies like Netflix, McDonald's,
Baidu, Forbes, and Shopify use KMP to reduce
code duplication, accelerate testing, and maintain
performance. The ecosystem is rapidly growing,
with strong Android Studio support and
multiplatform libraries. KMP delivers native-level
speed and full platform control, making it an
effective choice for teams using Kotlin or seeking
flexible, maintainable code.

Avalonia

Avalonia is an open-source, cross-platform Ul
framework for .NET that lets developers build
desktop and embedded applications. Unlike
frameworks that wrap native controls, Avalonia
uses its own rendering engine, ensuring consistent
interfaces across Windows, macOS, Linux, iOS,
Android, and WebAssembly. This approach gives
developers full control over the Ul and visual
behavior, making it well-suited for applications
where consistency and performance matter.
Avalonia is compatible with any .NET language and
integrates well with existing .NET libraries and
tooling.

Security and performance are comparable to
other native .NET solutions, and the framework is
a good candidate for teams with WPF experience
or those seeking a modern, flexible .NET Ul
platform.

mobisec

NativeScript

NativeScript, made by Telerik (now Progress
Software), lets developers make native mobile
apps using JavaScript or TypeScript, with direct
access to native APIs. Unlike WebView-based
frameworks, NativeScript renders native Ul
components, providing a more authentic user
experience and better performance. It is
compatible with popular frameworks like Angular
and Vue, and is used by companies such as SAP,
Puma, Deloitte, and Sennheiser for business
applications.

NativeScript's workflow enables code reuse and
faster development cycles, with gains in
developer productivity and time-to-market.
However, its popularity has waned, and its long-
term viability is less certain compared to newer
alternatives. The security considerations are like
those of other JavaScript-based frameworks.
This means developers need to be careful with
dependencies, code obfuscation and secure
storage practices.

Cordova

Apache Cordova, originally called PhoneGap,
lets developers create mobile apps using web
technologies like HTML, CSS, and JavaScript,
packaging them in a native container with
access to device features. This cross-platform
approach and plugin ecosystem made Cordova
popular for rapid prototyping and cost-
effective development, with companies like
Adobe and Microsoft using it for various
solutions.

However, Cordova’s reliance on WebView
limits performance and native integration,
especially for graphics-heavy apps. Its plugin
ecosystem is aging, community support has
declined, and security risks are higher
compared to modern frameworks like Flutter
and React Native. Today, Cordova is mainly
used for legacy apps, while most new projects
favor faster, more robust alternatives.

14

Others Notable
Frameworks

These frameworks are often limited by gaps in long-
term support, smaller, fragmented communities, less
mature security tooling and unpredictable update
cycles or licensing issues.

¢ Kivy: An open-source Python framework for
multi-touch and natural user interfaces, mainly
used in education, prototyping and hobby
projects due to its limited commercial support
and security infrastructure.

e LynxJS: A JavaScript framework by ByteDance
that uses Rust-based tooling for enhanced
performance and native Ul rendering. It is still in
the early stages of being used and is not yet
recommended for production.

e Qt: (Multiplatform Mobile App Development with
Qt) Qt is a mature, high-performance C++
framework widely used in embedded and desktop
systems and is deployed by large organizations. It
offers enterprise-grade security features and is
used in many security-sensitive domains. But Its
licensing model and complexity can be
challenging.

e Uno Platform: Extends WinUI/UWP-based
development to Android, iOS, macOS, and
WebAssembly, targeting teams with Microsoft
XAML expertise.

e Xamarin: was a pioneering cross-platform
framework. It enabled developers to build native
apps for iOS, Android, and Windows using C# and
the .NET ecosystem. With Microsoft ending
support for Xamarin in 2024, new projects are
encouraged to migrate to MAUL.

e Tauri: It's a new toolkit that puts security and
small file sizes first. It has a Rust backend and a
web-based frontend. It's ready for desktop use,
but to date support for mobile devices is still
being tested.

mobisec

15

Suitability and Security

Considerations

If GitHub stars are a measure of popularity and maturity, and we consider real-world adoption by
established companies, native development remains the gold standard for performance, security
and access to platform features. Among cross-platform solutions, Flutter leads momentum and
adoption, followed by React Native. lonic is a mature and widely used framework, but it relies on web
technologies and WebView containers, which can affect performance and security. NET MAUI,
which is backed by Microsoft, is the newest of these, and has a lot of potential for business use,
especially for teams that are already using the .NET ecosystem.

Here is a comparison of the top four frameworks, with a
focus on security and how widely they are used:

Backed
Framework

By
Flutter Google
React Native Meta
lonic [l

Team
.NET MAUI Microsoft

mobisec

GitHub
Stars
(May 2025)

170K+

122K

57K+

22K

Year

2017

2015

2013

2022

Reverse
Engineering
Risk

Moderate (AOT,
Dart)

High (JavaScript)

Very High
(WebView)

Moderate (C# IL)

SSL Pinning
Support

Built-in for Dart
HTTP, manual for
WebView

3rd-party
packages required

Plugin-dependent

Native support
(platform APIs)

Security
Tooling/Notes

Code obfuscation,
secure storage, custom
CA store, regular
advisories

Requires JS
obfuscation, secure
storage via plugins,
regular audits

WebView inherits
browser risks, relies on
web security practices

.NET encryption, AOT,
secure storage, regular
MS security updates

16

Key Security Considerations

» Native frameworksalways provide the earliest access to new platform security features and the
highest level of integration.

o Flutter offers some resistance to reverse engineering and has a unique CA store for SSL, but it
may lack certain native-level exploit mitigations unless configured.

¢ React Native is more likely to be reverse engineered and depends on the security of JavaScript
and its ecosystem. Advanced protection requires extra tools.

» lonicis most susceptible to vulnerabilities and reverse engineering because it inherits the attack
surface of web applications.

o .NET MAUIuses the .NET security stack but requires code obfuscation to mitigate IL
decompilation risks; it is well-suited for regulated industries with proper configuration.

mobisec

17

Mobisec DSA
Security Evaluation

Here are some other interesting results from the Mobisec DSA (Distributed Security Assessment)
test of mobile apps for Android and iOS, as well as cross-platform frameworks. The evidences are
split into two pages.

Security Issue

Cleartext Traffic
Support

Weak or
Deprecated
Cryptography

Use of Vulnerable
Third-Party
Libraries

Insecure Data
Storage

Security Provider
Misconfiguration

Insecure Deep Link
Implementation

Sensitive Data
Retained in
Memory

Description

Older Android devices allow
cleartext traffic by default,
and apps often do not
explicitly disable it.

Use of outdated or weak
hashing (SHA1, MD5),
encryption algorithms (DES,
ECB mode), or insecure
PRNGs for cryptographic
functions.

Integration of external
libraries that contain known
security vulnerabilities
(CVEs).

Sensitive data stored in
shared preferences or
unencrypted databases
without proper cleanup upon
logout. iOS backups often
include this data.

Incorrect use of
Providerinstaller can prevent
the app from using updated
SSL libraries, making it
vulnerable.

Deep links are not verified or
are poorly configured,
allowing unintended app
behavior or access.

Sensitive variables are not
cleared (overwritten or
nulled) after use, leaving
data in memory.

mobisec

Platform-
Specific?

Framework-
independent
(OS issue)

No, found
across all
frameworks

No, found
across all
frameworks

No, found
across all
frameworks

No, found
across all
frameworks

No, found
across all
frameworks

No, found
across all
frameworks

oS

Both

Both

Both

Both

Android

Android

Both

Severity
Level

Medium

Info level

Info level

Low

Info level

Medium

Low

Affected
Frameworks

All

All

All

All

All

All

All

Impacted
App %

80%
Android
~10% i0OS

90%
Android
~50% i0OS

80%

Android

~40% i0S

~90%

~90%

~30%

90%

Notes and Special
Cases

Flutter notes AES
CBC with
PKCS5/PKCST may
trigger a false
positive

Confirmed by
Android

18

Security Issue

Unrestricted
WebView
Navigation and
Caching

Vulnerable to
Tapjacking
(Overlay Attacks)

Weak App Signing
Algorithm or Key
Size

Missing or
Improper
Certificate Pinning

Sensitive Data
Logged

Misconfigured
Biometric
Authentication

Missing Native
Security Features

Sensitive Data in
Background
Screenshots

Description

Apps do not whitelist
domains or clear WebView
caches upon logout,
increasing exposure to
malicious links.

Apps fail to check if user
input occurs through
overlays, allowing potential
Ul redress attacks.

Apps are sometimes signed
using weak hash algorithms
like SHA1 or insufficient key
sizes (e.g., RSA with 1024
bits).

Apps either don’t implement
certificate pinning or
configure it incorrectly.

Logging sensitive
information, especially in
production environments,
can expose user data.

Android: CryptoObject is not
used or is improperly
implemented.

iOS: Uses only Boolean from
LocalAuthentication
framework, which is
patchable and lacks proof.

Native libraries lack security
flags such as Stack Canary,

PIC, etc., reducing resilience
against exploits.

When an app is
backgrounded, the OS may
take a screenshot of the Ul. If
sensitive data is visible, it
could be leaked or accessed
by spyware.

mobisec

Platform-
Specific?

No, found
across all
frameworks

No, found
across all
frameworks

Android-
specific issue

Yes, for Flutter

No, found
across all
frameworks

OS-specific
implementation
issue

Yes, for Flutter
and Swift

Framework-
independent
(OS issue)

oo fo
Both Medium
Android Medium
Android Info level
Both Medium
Both Low
Both Low
Both Info level
Both Low

Affected
Frameworks

All

All

All

All except
Flutter

All

All

All

All

Impacted
App %

~50%

~50%

~10%

~50%

10%

5% of
apps using
the
biometric
feature

~30%

~60%

Notes and Special
Cases

Flutter uses Dart with
a bundled CA list
(acts like pinning).
WebViews on Flutter
still require manual
pinning since they use
system CA store.

Flutter and Swift are
memory-safe. React
Native flagged but
often a false positive
(source).

19

https://github.com/facebook/react-native/issues/36870#issuecomment-1714007068

The Big Question

Choosing the right cross-platform framework is a decision that
depends on a project's technical requirements, business goals, and
long-term strategy. While the abundance of frameworks offers
flexibility, this can also make things more complicated. There is no
single choice that is always best. Instead, choosing the best solution
depends on looking closely at several important factors that directly
impact whether a project will be successful and sustainable or not.

The expected lifespan of the product is a key factor. For long-term or very critical applications,
framework maturity and backing are crucial. Popular frameworks like Flutter (Google), React Native
(Meta), and .NET MAUI (Microsoft) have strong support from big companies, are still being
developed, and have clear plans for the future. This means that developers can be sure that the
framework will be kept up to date and will work well with new operating system updates. Newer or
less popular frameworks, even those from major companies, may not be stable or have all the
features you need. They could have risks like undiscovered bugs or security flaws.

The industry context and specific regulatory challenges directly influence mobile framework
selection. Regulations in sectors like healthcare and finance, though they don’t mandate a particular
framework, they do require the software to implement security features like encryption, access
controls, audit logging, secure data transmission and more. These technical requirements mean that
only frameworks capable of supporting or being extended to support such features are viable
choices for regulated environments.

The company's technical set-up is also important. If a company already has a team who know C#
and use Microsoft products, .NET MAUI may make it easier to make the change and lower the
training costs. Also, organizations with strong web development expertise may find React Native or
lonic more approachable due to their JavaScript foundations.

The size of the community and the talent available are important things to take into account.
Frameworks with large, active communities-such as Flutter and React-Native offer better access to
libraries, learning resources, third-party integrations, and rapid bug fixes. This helps to solve
problems more quickly and make development cycles more predictable. On the other hand,
frameworks with small communities and support may have slower updates and less help from
outside, which can make it hard to deal with issues.

Security is a big and important issue with many layers. Mature frameworks often have better
security practices and tools, but each comes with its own risks. For example, Native Android apps
(Java/Kotlin), React Native (JavaScript), and Xamarin (C#) are easier to reverse engineer because
their code compiles to bytecode or intermediate formats that can be decompiled using common
tools. Without obfuscation and anti-tampering, sensitive business logic can be exposed.

Some frameworks, like Flutter, compile to native ARM code, offering more resistance to reverse
engineering, though they may lack the mature security tooling found in more established platforms.

In the end, the "best" framework is the one that matches your product's longevity, industry
requirements, technical environment, available talent, and security posture. There is no clear winner
— only the best option for your specific situation. Whatever the framework, secure storage, network
encryption, and regular security testing are always essential.

mobisec

Sources

Chapter “Flutter”

Tag Trend | Stack Overflow
Available at: https://trends.stackoverflow.co/?tags=flutter %2Ccordova%2Creact-
native%2Cxamarin.android%2Cionic-framework

List of companies that uses Flutter
Available at: https://flutter.dev/showcase

Security:

e https://www.cve.org/CVERecord/SearchResults?query=flutter

e https://docs.flutter.dev/security

e https://docs.flutter.dev/reference/security-false-positives

» https://mas.owasp.org/MASTG/techniques/android/MASTG-TECH-0109/#intercepting-traffic-

using-proxydroid-iptables-with-frida
e https://mas.owasp.org/MASTG/techniques/android/MASTG-TECH-0112/#using-blutter

Chapter “React Native”

List of companies that uses React Native
Available at: https://reactnative.dev/showcase

Security:

e https://reactnative.dev/docs/security_

e https://security.snyk.io/package/npm/react-native

o https://owasp.org/blog/2024/10/02/Securing-React-Native-Mobile-Apps-with-OWASP-MAS

Chapter “lonic”

List of companies that uses lonic
Available at: https://ionic.io/

Security:
o https://ionicframework.com/docs/techniques/security

Chapter “.NET MAUI”

List of companies that uses .NET MAUI
Available at:_https://dotnet.microsoft.com/en-us/platform/customers/maui

mobisec

21

https://trends.stackoverflow.co/?tags=flutter%2Ccordova%2Creact-native%2Cxamarin.android%2Cionic-framework
https://trends.stackoverflow.co/?tags=flutter%2Ccordova%2Creact-native%2Cxamarin.android%2Cionic-framework
https://trends.stackoverflow.co/?tags=flutter%2Ccordova%2Creact-native%2Cxamarin.android%2Cionic-framework
https://flutter.dev/showcase
https://flutter.dev/showcase
https://www.cve.org/CVERecord/SearchResults?query=flutter
https://docs.flutter.dev/security
https://docs.flutter.dev/reference/security-false-positives
https://mas.owasp.org/MASTG/techniques/android/MASTG-TECH-0109/#intercepting-traffic-using-proxydroid-iptables-with-frida
https://mas.owasp.org/MASTG/techniques/android/MASTG-TECH-0109/#intercepting-traffic-using-proxydroid-iptables-with-frida
https://mas.owasp.org/MASTG/techniques/android/MASTG-TECH-0112/#using-blutter
https://reactnative.dev/docs/security
https://www.cve.org/CVERecord/SearchResults?query=flutter
https://www.cve.org/CVERecord/SearchResults?query=flutter
https://security.snyk.io/package/npm/react-native
https://www.cve.org/CVERecord/SearchResults?query=flutter
https://www.cve.org/CVERecord/SearchResults?query=flutter
https://owasp.org/blog/2024/10/02/Securing-React-Native-Mobile-Apps-with-OWASP-MAS
https://www.cve.org/CVERecord/SearchResults?query=flutter
https://www.cve.org/CVERecord/SearchResults?query=flutter
https://ionic.io/
https://ionicframework.com/docs/techniques/security
https://dotnet.microsoft.com/en-us/platform/customers/maui

@ staysafe@mobisec.com

Mobisec

e Viale della Repubblica 22 / Il
Villorba (Treviso) - Italia

mobisec.com

https://www.mobisec.com/?utm_source=whitepaper&utm_medium=landing+page&utm_campaign=whitepaper+mobile+app+framework&utm_id=whitepaper+mobile+app+framework
https://maps.app.goo.gl/Z8CqE7JCrwQom3ca7
mailto:staysafe@mobisec.com
https://www.linkedin.com/company/mobisec-italia
mailto:staysafe@mobisec.com
https://www.linkedin.com/company/mobisec-italia
https://maps.app.goo.gl/Z8CqE7JCrwQom3ca7
https://maps.app.goo.gl/Z8CqE7JCrwQom3ca7

