
WHITEPAPER

Authentication
Protocols and Tokens:
Mapping the Landscape



Table of contents

PREPARED BY

PREPARED FOR

Ahmad Zubair Zahid

Mobisec

1

Authentication vs Authorization03

Understanding the critical differences in security mechanisms

Authentication Methods vs Authentication
Protocols

04

Different approaches and structured frameworks

Session vs Token-based Authentication04

Exploring two fundamental authentication paradigms

Appropriateness for Mobile Applications05

Evaluating mobile-first considerations in authentication

Common Authentication Protocols06

An overview of widely-used security standards

Summary of Authentication Protocols08

Key takeaways from protocol comparisons

Conclusion09

Final thoughts on secure authentication practices

Further Reading10

Resources to deepen your understanding

Appendix11

Additional details and supplementary materials

References13

Cited works and references supporting the analysis



Introducing
the paper

Authentication is a critical aspect of mobile security, but
it can be complex and challenging to understand due to
the abundance of similar-sounding terms and technical
jargon. For instance, should we refer to "authentication
protocols" or "authentication methods"? This paper aims
to clarify such distinctions and bring much-needed
clarity to the topic.

Understanding the available protocols, methods, and associated technologies is
essential for selecting the most appropriate solution for any given context. This
knowledge benefits both project managers and developers. For managers, a
shared understanding and consistent terminology improve communication,
minimizing the risk of misinterpretation. For developers, knowing where to start
and what to prioritize enables informed decision-making and ensures the
correct implementation path is followed. With these objectives in mind, we have
titled this paper Authentication Protocols and Tokens: Mapping the Landscape.

The paper begins by demystifying commonly confused terminology and then
explores authentication protocols, detailing their purposes, use cases, and
implementations within the context of mobile applications. Additionally, it
includes an appendix of terms to further elaborate on key concepts. This
structured approach equips both managerial and technical teams with the
insights needed to effectively navigate the evolving landscape of mobile
authentication.

2

PREPARED BY

PREPARED FOR

Ahmad Zubair Zahid

Mobisec

This is an approachable guide designed to help you enhance the security of your
mobile applications, with a focus on authentication—the process of verifying
user identities. The guide:

Simplifies complex and often confusing concepts, making them more
accessible and easier to understand;

Maps out the relationships between authentication methods, protocols, and
tokens, offering clear insights;

Is tailored for project managers and developers, providing information to
support decision-making and introduce advanced options that may not yet
be on your radar.

Equip your team with practical knowledge to build secure, scalable, and future-
proof applications.



Authentication is the process of verifying that an
individual or system is who they claim to be, while
identification simply establishes their identity. In
our daily interactions with technology, we
frequently encounter terms such as Authentication,
Authorization, Authentication Protocols, and
Authentication Methods. Although these terms may
sound similar, they serve distinct purposes,
particularly in the realm of digital security.

This paper aims to clarify these concepts and
highlight their importance in the context of mobile
applications.

3

Authentication vs
Authorization

Authentication ensures that users are who they
state they are, often through passwords,
biometrics, or multi-factor verification.
Authorization, on the other hand, controls what
verified users can access within a system. These
two steps work together, but serve different
purposes in the digital world. While authentication
answers the question "Who are you?", authorization
answers the question "What are you allowed to do?

Think of authentication and authorization as
entering a secured building. Authentication is like
showing your ID to verify who you are, while
authorization is like being told what rooms you're
allowed to access.

Authentication
Protocols and Tokens:
Mapping the Landscape



Authentication Method: The process by which you
provide your credentials—be it through a
password, fingerprint scan, or face ID—is referred
to as the authentication method.

4

Authentication Protocol: This refers to the
underlying system that securely manages,
transmits, and verifies authentication information
between your device, the website's servers, and
other involved parties. Authentication protocols
define the specific steps, message formats, and
security measures required to ensure that the
process is secure, reliable, and interoperable
across different systems. Acting as a common
language, they enable seamless and secure
communication among the various components
involved in authentication, regardless of their
individual implementations.

In other words, authentication
methods focus on how users prove
their identity, such as using
passwords or biometrics.

Authentication protocols, such as
OAuth or SAML, define how this
information is communicated
securely between systems. This
paper focuses on the latter, with a
spotlight on mobile applications and
their server connectivity.

Session-Based Authentication:
In session-based authentication, the server
generates a unique session ID upon user login and
stores the session data on the server-side. This
session ID is then sent to the client, typically via a
cookie, and included in subsequent requests to
maintain the authenticated state.
This method is particularly well-suited for
traditional web applications and browser-centric
environments, where server-side session
management provides enhanced security controls.
Browsers can handle session cookies securely
using attributes such as HttpOnly, Secure, and
SameSite flags. These attributes prevent client-
side script access, ensure that cookies are
transmitted only over HTTPS, and protect against
cross-site request forgery (CSRF) attacks.

When users log into an application, they expect to
remain authenticated without having to re-enter
their credentials. This seamless experience is
enabled by either session-based or token-based
authentication mechanisms.

Token-Based Authentication:
Token-based authentication involves issuing
cryptographically signed tokens—such as JSON
Web Tokens (JWTs)—to authenticated users.
These tokens encode user information and claims,
enabling the server to verify identity and
permissions without maintaining session state.
This stateless approach is particularly well-suited
for mobile applications, Single Page Applications
(SPAs), and distributed systems, as it enhances
scalability and reduces server overhead. Tokens
can be securely stored on mobile devices using
hardware-backed storage solutions, such as the
Android Keystore or iOS Keychain.
Protocols like OAuth 2.0 and JWTs enable efficient
communication between mobile applications and
APIs. Additionally, the use of refresh tokens allows
for extended session durations and offline
capabilities, ensuring users can stay logged in
without frequent re-authentication.

Authentication Methods vs
Authentication Protocols

Session vs Token-Based
Authentication



Token-based authentication is highly suited for mobile security due to its
stateless design, performance advantages, enhanced security measures, and
flexibility in distributed and cross-platform environments. It seamlessly meets
the needs of today's mobile applications, which require efficient, secure, and
scalable authentication mechanisms.

Statelessness and Scalability01

The stateless nature of token-based authentication reduces server-side
complexity and improves scalability, an essential benefit for mobile
applications interacting with distributed APIs and microservices.

Performance02

By eliminating the need for server-side session validation, token-based
authentication reduces latency and improves the responsiveness of mobile
applications, in particular in environments with unreliable networks.

Enhanced Security03

Storing tokens in secure, hardware-backed storage significantly reduces
the risk of compromise. In addition, token expiration and refresh
mechanisms help mitigate the risks associated with token theft or misuse.

Flexibility and Fine-Grained Access Control04

Tokens can embed detailed claims about user roles and permissions,
enabling fine-grained access control without additional database queries.

Cross-Platform Consistency05

Token-based systems enable seamless authentication across multiple
platforms (mobile, web, desktop) because tokens are not tied to a specific
server-side session store.

5

Appropriateness
for Mobile Applications



OAuth 2.0

6

Common Authentication
Protocols

Description: OAuth 2.0 enables third-party
applications to access an HTTP service on behalf of
a user by issuing access tokens, eliminating the
need to directly handle user credentials. The
framework supports a variety of grant types,
including authorization code, implicit, password,
and client credentials, providing flexibility to
address a wide range of scenarios.

Mobile App Integration: Mobile applications
typically use Authorization Code Grant with PKCE,
where the application generates a code verifier and
challenge to securely obtain an access token after
the user authenticates.

Security Considerations: OAuth 2.0 is widely
adopted and supported, but improper
implementations can introduce vulnerabilities such
as token interception or misconfiguration. This
makes rigorous security validation essential.

Use Case: OAuth 2.0 is ideal for mobile applications
that require delegated access to user resources,
such as integrating social media platforms without
the need to manage user passwords.

OpenID Connect (OIDC)

Description: OIDC extends OAuth 2.0 by
introducing an identity layer that allows clients to
verify a user's identity through an authorization
server and retrieve basic profile information in a
standardized format.

Mobile App Integration: After the user
authenticates, the application receives an ID token
(a JWT) that contains claims about the user. To
authenticate the user, the application validates this
token by verifying its signature, issuer, audience,
and expiration.

Security Considerations: OIDC inherits the
complexity of OAuth 2.0 and requires careful
handling of ID tokens to prevent vulnerabilities such
as token replay attacks or unauthorized access.

Use Case: OIDC is ideal for applications that require
user authentication and profile information from
identity providers, such as Google or Microsoft,
without having to manage user credentials directly.



mTLS provides mutual authentication by requiring
both the client and server to present certificates
during communication. This approach provides
robust security, but comes with the added
complexity of certificate management.

In addition to widely used user authentication
protocols such as OAuth 2.0, OpenID Connect, and
SAML, other methods are available for
authenticating clients or endpoints in low-level
technical integrations. Mutual TLS (mTLS) and API
keys are two notable examples.

API keys, on the other hand, are static tokens used
for simple client authentication. While they are
easier to implement, they lack user-specific
controls and can be vulnerable if not properly
secured.

7

SAML (Security Assertion
Markup Language)

Description: SAML is an XML-based framework
designed to facilitate the exchange of
authentication and authorization data, commonly
used for Single Sign-On (SSO) in enterprise
environments.

Mobile App Integration: The app redirects users to
a SAML identity provider for authentication. The
provider returns a signed SAML assertion that the
application forwards to the server for validation.

Security Considerations: SAML provides robust
security for enterprise applications requiring SSO,
but its XML processing and heavyweight nature
can make it more resource-intensive than other
protocols.

Use Case: SAML is best suited for enterprise
applications that need to integrate with corporate
identity systems for SSO, especially when users
need to access multiple services with a single login.

Other methods

Both mTLS and API keys prioritize securing client-
server communication over user authentication,
making them ideal for specific technical use cases.



Protocol Authentication
Type

Security
Features Complexity Token

Type
Mobile
Integration

Common
Scenarios

OAuth 2.0 Token-based

Flexible,
supports
scopes,
PKCE for
public
clients

Medium
Access
token

PKCE
recommended
for enhanced
security

Social media
login, access to
third-party
APIs

OpenID
Connect Token-based

JWT for
identity,
SSO

Medium
ID token
(JWT)

Built on OAuth
2.0, PKCE
supported

SSO, user
authentication
via providers
(Google,
Microsoft)

Mutual
TLS Certificate-based

Strong
identity
verification

High
X.509
certificates

Requires
secure
storage of
certificates

Financial
services,
healthcare,
internal
enterprise
apps

SAML Assertion-based

Strong,
XML-
based
assertions

High
SAML
assertion

Redirect-
based flow

Corporate
SSO,
enterprise
identity
integration

API Keys Key-based

Simple,
can be
used for
client and
server auth

Low Static key
Easy to
implement,
lightweight

Public data
access,
analytics,
server-to-
server
communication

8

Summary of
Authentication Protocols
Use Cases, Security Features,
Complexity, and Integration



The landscape of authentication protocols is constantly evolving, especially in
the context of mobile applications. As mobile technologies continue to evolve,
the need for scalable, secure, and easy-to-use authentication methods becomes
increasingly important. Token-based authentication, especially via protocols
such as OAuth 2.0 and OpenID Connect, strikes a balance between security and
performance, protecting sensitive data while providing a seamless user
experience.

9

Conclusions

However, the choice of authentication protocol should be driven by the specific
requirements of the application, considering factors such as security needs,
scalability, and user experience. As digital security threats continue to evolve, so
must the protocols and methods we rely on. This underscores the importance of
staying informed about mobile authentication best practices and emerging
standards.



For those looking to deepen their understanding of authentication protocols and token-based security,
there is a wealth of basic and advanced resources covering both theoretical frameworks and practical
implementations.

10

Further Readings

These materials cover key topics such as the OAuth 2.0 authorization framework, OpenID Connect for
identity verification, and the structure and security of JSON Web Tokens (JWTs).

In addition, resources such as the NIST Digital Identity Guidelines provide authoritative best practices for
implementing secure authentication mechanisms, while OWASP provides valuable insight into common
mobile application security risks. Together, these resources provide a comprehensive view of the
authentication landscape, enabling readers to design and maintain robust authentication systems across
multiple platforms and environments.

RFC 6749: The OAuth 2.0 Authorization Framework

OAuth 2.0

OpenID Connect Core 1.0 Specification 

RFC 7519: JSON Web Token (JWT) 

JWT.io: Introduction and Debugger Tool 

Apple Developer Documentation: Keychain Services 

Android Developers: Security with Credential Storage 

OWASP: Transport Layer Protection Cheat Sheet 

OWASP API Security Top 10 

NIST Special Publication 800-63B: Digital Identity Guidelines 

Android Developers: Best Practices for Security & Privacy 

Apple Developer Documentation: Secure Coding Guide 

OWASP Mobile Top 10 Risks 

CWE List: Common Weakness Enumeration 

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://oauth.net/articles/
https://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc7519
https://jwt.io/
https://developer.apple.com/documentation/security/keychain_services
https://developer.android.com/training/articles/keystore
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://owasp.org/www-project-api-security/
https://pages.nist.gov/800-63-3/sp800-63b.html
https://developer.android.com/training/best-security
https://developer.apple.com/library/archive/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://owasp.org/www-project-mobile-top-10/
https://cwe.mitre.org/


Tokens

11

Appendix

While protocols such as OAuth 2.0 and OpenID
Connect define the framework for authentication
processes, tokens serve as the practical tools that
enable these operations. Acting as digital keys,
tokens grant access to protected resources once a
user's identity has been verified.

Understanding the structure, usage, and security
considerations of tokens is essential, as they play a
key role in ensuring secure, scalable, and efficient
authentication across distributed systems -
especially in mobile environments.

Understanding Tokens

Tokens are fundamental to modern authentication
and authorization mechanisms in mobile
applications. Acting as digital keys, they allow
clients to access protected resources without the
need to repeatedly present user credentials.

Tokens vs. Credentials: Credentials are highly
sensitive pieces of information, typically consisting
of a username and password used for initial
authentication. They must be protected at all times
to prevent unauthorized access.
Tokens, on the other hand, are issued after
successful authentication and are used for
subsequent requests. Usually short-lived,
dynamically generated, and limited in scope, tokens
reduce the risk associated with long-lived
credentials.

Common Types of Token Based on
Purpose

Access Tokens: Access tokens grant access to
protected resources. They are short-lived to
minimize risk if compromised and include scopes
that define accessible resources accessible
resources. In practice, they are sent in the
Authorization header as Bearer <token>.

ID Tokens: ID tokens verify a user's identity. They
contain user identity assertions and are commonly
used in OpenID Connect implementations. Clients
use these tokens to locally authenticate the user
without revalidating credentials with the server.

Refresh Tokens: Refresh tokens are used to obtain
new access tokens without requiring the user to re-
authenticate. They are long-lived but highly
sensitive and must be stored securely. Clients send
refresh tokens to the token endpoint to obtain new
access tokens when the current ones expire.

Types of Tokens Based on Structure

Opaque Tokens vs. Structured Tokens: Opaque
tokens are random strings with no inherent
meaning. The server maintains a mapping between
the token and the session data, which requires
server-side storage and validation. Structured
tokens, such as JSON Web Tokens (JWTs), contain
encoded data - often in JSON format - and are self-
contained, allowing validation without server-side
storage.

JSON Web Tokens (JWTs): JSON Web Tokens
(JWTs) consist of three Base64 encoded parts: the
header, the payload, and the signature. The header
specifies the token type and signing algorithm, the
payload contains user claims and metadata, and the
signature ensures the integrity and authenticity of
the token.

JWTs are advantageous in mobile applications
because they support stateless authentication,
eliminating the need for server-side session
storage. Their compact size lends itself to
bandwidth-constrained mobile networks, making
them efficient in distributed systems.
For security, it's important to verify the token's
signature and enforce short-lived tokens.
Validating expiration, audience, and issuer claims
helps prevent token misuse.



12

Appendix

Secure Token Handling Practices in Mobile
Applications

Secure Storage of Tokens:
On iOS devices, use the Keychain Services API to
store tokens securely.
On Android devices, use the Android Keystore
System or Encrypted Shared Preferences.
NOTE: You should use backup rules to exclude all
EncryptedSharedPreferences from backup.

Secure Transmission: Always send tokens over
HTTPS to prevent interception by unauthorized
parties. Implementing SSL pinning adds an extra
layer of security by ensuring that the application
communicates only with trusted servers,
preventing man-in-the-middle attacks.

Token Renewal and Revocation: When access
tokens expire, securely use refresh tokens to obtain
new tokens. Implement server-side mechanisms to
check token revocation lists or opt for short-lived
tokens to minimize risk if a token is compromised.

Preventing Token Leakage: Avoid logging tokens in
application logs or crash reports, as these can be
accessed by unintended recipients. Ensure that
tokens are not exposed to other applications
through secure inter-process communication
mechanisms.

Handling Token Expiry: Detect token expiration by
checking the "exp" claim in JWTs or by handling
server responses indicating token expiration.
Implement logic to automatically refresh tokens
with refresh tokens, providing a seamless user
experience without unnecessary re-authentication
prompts.



OAuth 2.0 Authorization Framework - RFC 6749
Reference:
Hardt, D. (2012).
The OAuth 2.0 Authorization Framework (RFC 6749). Internet Engineering Task Force (IETF).

Available at: https://tools.ietf.org/html/rfc6749

13

References

OpenID Connect Core 1.0
Reference:
Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., & Mortimore, C. (2014).
OpenID Connect Core 1.0 incorporating errata set 1. OpenID Foundation.

Available at: https://openid.net/specs/openid-connect-core-1_0.html

JSON Web Token (JWT) - RFC 7519
Reference:
Jones, M., Bradley, J., & Sakimura, N. (2015).
JSON Web Token (JWT) (RFC 7519). Internet Engineering Task Force (IETF). 

Available at: https://tools.ietf.org/html/rfc7519

NIST Digital Identity Guidelines
Reference:
National Institute of Standards and Technology (NIST). (2017).
Digital Identity Guidelines (SP 800-63B).

Available at: https://pages.nist.gov/800-63-3/sp800-63b.html

OWASP Mobile Top 10 Risks
Reference:
OWASP Foundation. (2016).
Mobile Top 10 Risks.

Available at: https://owasp.org/www-project-mobile-top-10/

https://tools.ietf.org/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc7519
https://pages.nist.gov/800-63-3/sp800-63b.html
https://owasp.org/www-project-mobile-top-10/


In

staysafe@mobisec.com

Mobisec

Viale della Repubblica 22 / III
Villorba (Treviso) - Italia

https://www.mobisec.com/
https://maps.app.goo.gl/Z8CqE7JCrwQom3ca7
mailto:staysafe@mobisec.com
https://www.linkedin.com/company/mobisec-italia
mailto:staysafe@mobisec.com
https://www.linkedin.com/company/mobisec-italia
https://maps.app.goo.gl/Z8CqE7JCrwQom3ca7
https://maps.app.goo.gl/Z8CqE7JCrwQom3ca7

